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Abstract

We introduce a class of matrix-valued radial basis functions (RBFs) of compact support that can be
customized, e.g. chosen to be divergence-free. We then derive and discuss error estimates for interpolants
and derivatives based on these matrix-valued RBFs.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Several applications of radial basis functions (RBFs) require that specific physical properties
of the data are reflected by the interpolant. For example, if the data comes from the velocity field
of the flow of an incompressible fluid, it is desirable that the interpolant be divergence-free (i.e.
the vector field v(x) fulfills ∇ · v ≡ 0). Since divergence-free scalar-valued interpolants do not
exist, Narcowich and Ward [8] addressed this problem by constructing matrix-valued RBFs that
give rise to divergence-free interpolants. However, since these functions are generated by smooth
RBFs with unbounded support, the corresponding interpolants are not particularly well suited for
computation. In this paper we exhibit RBF interpolants that are not only divergence free, but are
also much more efficient for computational purposes because of their compact support.

In the next section we construct the new RBF interpolants. The error estimates will be obtained
in the context of a reproducing kernel Hilbert space or native space tailored to the new type of
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RBF. The classic, scalar-valued type of native space can be extended, but some more work is
required. This is the topic of Section 2. We then proceed to derive error estimates for the new
RBFs. The final estimates will be of the form

‖D�(f − sf,X)‖∞ �Chl−|�|

for some power l > 0, where D� is a differential operator, X describes the set of scattered data
sites, sf,X is the interpolant of f, based on the set X and the matrix-valued RBF �, h is the mesh
norm, and C is a constant depending on f and �, but which is independent of the mesh norm.
No estimates of any type for the divergence-free RBFs have been previously derived. First error
estimates are obtained in Section 3, and the resultant power function is bounded in Section 4.
Estimates for one of the two major quantities arising in these bounds will be obtained in Section 5,
using the method of norming sets. Section 6 yields error estimates on the cube. Final error
estimates on �, a compact subset of Rs , are obtained in Section 7. Some examples and remarks
conclude the paper.

2. Notation and preliminaries

A general form of a divergence-free, s × s matrix-valued RBF � is given by the expression

�(x) = {∇∇T − �I }�(x), (1)

where � is a generating scalar-valued RBF, and ∇∇T − �I is the matrix-valued differential
operator consisting of the gradient ∇, the Laplacian operator �, and the s-dimensional identity
matrix I. Expanding on the method detailed in [8], where � was taken to be the smooth Gaussian
e−t‖·‖2

for t > 0, we use polynomials with a finite number of continuous derivatives instead. We
employ the recently developed C2k-Wendland functions [10] of compact support as our choice for
�. In addition to being symmetric and divergence-free, the resulting matrix-valued RBF is also
positive definite and compactly supported. Formal proofs of these facts are given in [5, Theorem
3.2, Lemma 3.5].

Suppose K is a positive integer. Let EK denote the set of all functions f : Rs → Cs such that
each component of f belongs to CK(Rs). Let E ′

K be the set of all compactly supported Cs-valued
distributions, i.e. � = (�(1), . . . , �(s))T , with �(j) ∈ (CK(Rs))′ denoting the jth coordinate of
� for j = 1, . . . , s. If � ∈ E ′

K , then let �∗ := �̄T be the conjugate transpose of �. The linear
functional corresponding to the distribution � acts on f ∈ EK via (�∗, f ) = ∑s

j=1(�̄(j), f (j)).
Suppose � is a positive integer. Let B := {Bj (x)}�j=1 be a set of Cs-valued polynomials defined

on Rs . A subset GB of EK is said to be B-admissible if Bj (∇)∗f ≡ 0 for every f ∈ GB and every
1�j ��. Observe that if � = 1, s�2, and B1(x) = x, then GB = Gdiv, the admissible space
of divergence-free vector-valued functions. Although this paper will focus almost exclusively
on Gdiv, the reader will observe that our methods and results allow suitable extensions to other
situations as well.

Assume that we are given data (�∗
j , f ) = dj , where each dj , 1�j �N , is a scalar and

� := {�j }Nj=1 is a linearly independent subset of E ′
K . To avoid redundant data, we require that

{(�∗
j , f )}Nj=1 be linearly independent for every f ∈ GB; we then say � is GB-linearly independent.
In order to deal with interpolation problems requiring polynomial reproduction, we introduce

the following subspaces: given a positive integer m, we let Ps 	→s
m denote the collection of all

p : Rs → Cs such that each component of p is an s-variate polynomial whose (total) degree is
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at most m − 1. Define Pm := Ps 	→s
m ∩ GB,

E ′
K,m(GB) := {� ∈ E ′

K : (�∗, p) = 0 for all p ∈ Pm}, m�1, (2)

and E ′
K,0(GB) := E ′

K . Suppose � and �̃ belong to E ′
K . Let � be an s × s matrix each of whose

entries is a function in C2K(Rs); let �j denote the jth column of �. Define (�∗ ⊗ �̃, �) :=
(�∗,

s∑
j=1

�j ∗ �̃(j)). Assume further that all columns of � belong to GB, and that �(x)∗ = �(−x)

for all x∈Rs . We say that � is an (order-m) GB-conditionally positive definite (GB-CPD) function if

(�∗ ⊗ �, �)�0 for all � ∈ E ′
K,m(GB). (3)

If equality in (3) implies that (�∗, g) = 0 for all g ∈ GB, we say that � is strictly GB-CPD.
When m = 0, we say that � is strictly positive definite (SPD). Given a strictly GB-CPD matrix-
valued function �, we define an inner product on E ′

K,m(GB) as follows: for �, �̃ ∈ E ′
K,m(GB), let

〈�, �̃〉� := (�̃∗ ⊗ �, �). The norm induced by this inner product is denoted by ‖ · ‖�. Suppose
now that f ∈EK . We define

|f |� := sup
�∈E ′

K,m(GB)

‖�‖�=1

|(�∗, f )|, (4)

and the native space of � to be N� := {f ∈ EK : |f |� < ∞} .

Note that we required all elements of � to belong to C2K(Rs), with 2K an even integer, in
order to guarantee that the expression (�∗ ⊗ �, �) in (3) is well defined for � ∈ E ′

K . We are now
ready to formulate our main problem [1,2,7,8].

Problem 1 (Generalized Hermite Interpolation Problem). Assume that � is a strictly order-m
GB-CPD, s × s matrix-valued function. Let � = {�j }Nj=1 be a GB-linearly independent set of
distributions in E ′

K , and let f be a function in EK . Given the data dj = (�∗
j , f ), 1�j �N , find

� ∈ span{�} ∩ E ′
K,m(GB) and p ∈ Pm such that � ∗ � ∈ GB and sf,X = � ∗ � + p satisfies: if f is

in Pm, then sf,X = p = f , and further

(�∗
j , sf,X) = dj for 1�j �N. (5)

We assume that the function f generating the data belongs to the function class F , defined as:

Definition 2. We say that a function f belongs to F if (i) f ∈ EK , and (ii) f is representable in
the form f = � ∗ � + p, where p ∈ Pm and � ∈ E ′

K,m(GB).

Note that |f |� = ‖�‖� holds for any f ∈ F , and hence F ⊂ N�. Let us point out that
if, in Problem 1, m is chosen to be zero and �j = vj�xj

, vj ∈ Cs , xj ∈ Rs , and �xj
is a

Dirac �-distribution at xj for 1�j �N , then the interpolant sf,X takes the well-known form∑N
j=1 �(· − xj )vj . The last result in this section guarantees that Problem 1 always has a unique

solution. Its proof, which is a direct modification of [8, Theorem 2.3], is omitted.

Theorem 3. If the dimensions of span{�}\E ′
K,m(GB) and Pm agree, then Problem 1 has a unique

solution.
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We now turn to the task of establishing error bounds for the interpolants described in Problem 1.
The corresponding issue for scalar-valued RBFs has been addressed in [6,9,12]. Here we shall
extend the method from [9] and obtain comparable estimates for matrix-valued RBF interpolants
possessing additional constraints.

3. Initial error estimates

For the remainder of the paper, we assume the following: Let GB = Gdiv =: G, further, let
K = k/2 for k an even integer, and let � be an s × s matrix-valued, strictly order-m G-CPD
function with its components being in Ck(Rs), and let f ∈ F . Further suppose that � = {�j }Nj=1
is as in Problem 1. Our first estimate is contained in the following proposition, which serves to
bound the interpolation error in the terms of the quantity |f |� and the power function, defined as

P
�
�,� := min

∥∥∥∥∥∥� −
N∑

j=1

cj�j

∥∥∥∥∥∥
�

,

where the minimum is taken over all constants c1, . . . , cN satisfying the constraint (�∗, p) =∑N
j=1 cj (�

∗
j , p) for all p ∈ Pm. Note that P

�
�,� is independent of f. We remark that pointwise

error estimates are obtained for the choice � = v�x , where v ∈ Cs is some vector and x ∈ Rs . In
this case one finds that (�∗, f − sf,X) = v∗(f − sf,X)(x).

Proposition 4. Assume that the hypothesis of Theorem 3 is in place and that the above assump-
tions hold. If � ∈ E ′

K , then

|(�∗, f − sf,X)|� |f |�P
�
�,�. (6)

Proof. By Theorem 3 there always exists a solution sf,X = �∗�+q with � ∈ span{�}∩E ′
K,m(G)

satisfying (�∗
j , f − sf,X) = 0, 1�j �N , and q ∈ Pm, the set of all s-component polynomials p

of degree m−1 for which ∇ ·p ≡ 0. From this and the assumption f = �∗ �̃+p it immediately
follows that 0 = (�∗, f − sf,X) = 〈�̃ − �, �〉�, and hence ‖�̃‖2

� = ‖�̃ − �‖2
� + ‖�‖2

�. Since
the interpolation process reproduces Pm, the set �∗|Pm

:= {�∗
j }Nj=1—if restricted to elements of

Pm—spans the dual of Pm. So there exist constants c1, . . . , cN such that
N∑

j=1
cj (�

∗
j , p) = (�∗, p)

for all p ∈ Pm. Thus, � −
N∑

j=1
cj�j is in E ′

K,m(G). Hence, we can derive

|(�∗, f − sf,X)| =
∣∣∣∣∣∣
⎛
⎝
⎛
⎝� −

N∑
j=1

cj�j

⎞
⎠∗

, f − sf,X

⎞
⎠
∣∣∣∣∣∣ �‖�̃‖�

∥∥∥∥∥∥� −
N∑

j=1

cj�j

∥∥∥∥∥∥
�

. (7)

If in (7), we now replace ‖�̃‖� by the function norm in (4), and take the minimum of (7) over
all cj ’s satisfying the property (�∗, p) = ∑N

j=1 cj (�
∗
j , p) for all p ∈ Pm, we obtain the desired

estimate (6). �

The error bound (6) is of limited value unless the resultant power function can be estimated in
a useful manner. The remainder of the paper will be devoted to this task.
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4. Estimates on the power function

In this section we will derive upper bounds for the power function based on divergence-free
RBFs �. From Proposition 4, we see that (P

�
�,�)2 is the minimum of the quadratic form

Q�(c1, . . . , cN) :=
⎛
⎝
⎛
⎝� −

N∑
j=1

cj�j

⎞
⎠∗

⊗
⎛
⎝� −

N∑
j=1

cj�j

⎞
⎠ , �

⎞
⎠ , (8)

with
∑N

j=1 cj (�
∗
j , p) = (�∗, p) for all p ∈ Pm. In order to bound (8), we will first approximate

� component wise by a function �Pm
in Pm ⊗ P∗

m. We then estimate Q� by bounding Q�−�Pm

using Taylor residuals. The next proposition establishes that the two quadratic forms agree and
also gives a first upper bound on P

�
�,�.

Proposition 5. Let �Pm
be an s × s matrix-valued function whose components are in Pm ⊗ P∗

m,
and let the cj ’s satisfy the constraint (�∗, p) = ∑N

j=1 cj (�
∗
j , p) for all p ∈ Pm. Then Q� =

Q�−�Pm
and

(P
�
�,�)2 �Q�−�Pm

(c1, . . . , cN).

Proof. Let �̃ = � −
N∑

j=1
cj�j . Then �̃ ∈ E ′

K,m(G). Hence, Q� = (�̃∗ ⊗ �̃, �) by (8). If {pj }Mj=1

is a basis for Pm, we write �Pm
=

M∑
j,k=1

bj,k pj ⊗ p∗
k , where bj,k and pj ⊗ p∗

k are matrices for

all j, k. Thus,

Q�−�Pm
= (�̃∗ ⊗ �̃, �) −

M∑
j,k=1

(�̃∗ ⊗ �̃, bj,k pj ⊗ p∗
k )

︸ ︷︷ ︸
=0

= Q�.

By definition, (P
�
�,�)2 is the minimum of Q�, which completes the proof. �

Remark 6. The question naturally arises how functions in Pm ⊗ P∗
m can be used to locally

approximate � component wise, with all columns of �Pm
belonging to G; the space Pm might

seem rather small. First, note that one can always enlarge Pm to consist not only of the functions we
wanted our original interpolation problem to reproduce, but of many more. This follows because,
given a space P containing Pm, � being a strictly G-CPD function for P implies that � is a strictly
G-CPD function for Pm. Second, once Pm is enlarged in the desired way, Lemma 7 assures that
all columns of �Pm

still belong to G.

Lemma 7. Let �Pm
= (�Pm �,�)1��,�� s be the matrix with its components being the Taylor

polynomials of degree k − 1 at a neighborhood of the origin for the corresponding components
of � = (��,�)1��,�� s . Then all columns of �Pm

are in G.

Proof. Let �Pm�,�(x) = ∑
|	|<k D	��,�(0)x	/	! for 1��, ��s. We will now prove that the

columns �Pm,1, . . . , �Pm,s are in the admissible space G, i.e. that they fulfill ∇ · �Pm,i ≡ 0 for
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1� i�s. We obtain

�x(i)�Pm�,�(x) =
∑

|	|<k−1,	i �1

D	 ��,�(0)
x

	1
1 · · · x	i−1

i · · · x	s
s

	1! · · · (	i − 1)! · · · 	s !
,

and hence �x(i)�Pm�,�(x) = ∑
|	̃|<k−1 D	̃(�x(i)��,�)(0)x	̃/	̃!, where we set 	̃ := 	|	i→	i−1.

Thus, partial derivatives turn out to work on the coefficients. For general D���,�, the same idea
applies, since any �x(i)�x(j) can be applied one at a time. We hence obtain ∇ · �Pm,i(x) =∑

|	̃|<k̃
D	̃(∇ · �i )(0)x	̃/	̃! = 0, for any column �Pm,i , 1� i�s, of �Pm

since the derivatives

D	̃ and ∇ are commutative, where 	̃, k̃ are obtained in the above-described matter. �

In [8, Lemma 2.2] it was shown that, if �(x)∗ = �(−x), then � is a conjugate symmetric
matrix-valued function. We now require that � fulfill this assumption. Then �Pm

is conjugate
symmetric as well. Eq. (8) now yields

Q�−�Pm
= (�∗ ⊗ �, � − �Pm

) − 2�
⎧⎨
⎩

N∑
j=1

cj

(
�∗ ⊗ �j , � − �Pm

)⎫⎬⎭
+

N∑
j,k=1

cj c
∗
k (�

∗
k ⊗ �j , � − �Pm

). (9)

Let �0 := |(�∗ ⊗ �, � − �Pm
)|, �1 := maxj |(�∗ ⊗ �j , � − �Pm

)|, and �2 := maxj,k |(�∗
k ⊗

�j , � − �Pm
)|. Eq. (9), together with Proposition 5, yields the following estimate for the power

function:

Theorem 8. Let �Pm
be a conjugate symmetric matrix-valued function whose components are

in Pm. For any c = (cj )
N
j=1 satisfying (�∗, p) = ∑N

j=1 cj (�
∗
j , p) for all p ∈ Pm, we have the

following upper bound on the power function:

(P
�
�,�)2 ��0 + 2‖c‖1�1 + ‖c‖2

1�2. (10)

5. First upper bounds for ‖c‖

Our next goal is to obtain bounds on ‖c‖1 in (10) satisfying the constraint (�∗, p) = ∑N
j=1 cj

(�∗
j , p) for all p ∈ Pm. We will apply the technique of norming sets [3,4]. The following propo-

sition provides an upper bound for ‖c‖1 which holds uniformly on any compact subset � of Rs .
We define T : Pm → RN by T (p) := ((�∗

j , p))Nj=1 and ‖T −1‖ := supp∈Pm, p �=0
‖p‖Pm‖T (p)‖∞ .

Proposition 9. There exist coefficients c = (cj )
N
j=1 such that for all p ∈ Pm, the condition

(�∗, p) = ∑N
j=1 cj (�

∗
j , p) holds. Furthermore, ‖c‖1 �‖�|Pm

‖P∗
m

‖T −1‖.

Proof. Adopting the definition of norming sets [9, Definition 3.3, Proposition 3.4] gives the
necessary assumptions for a norming set. The desired result now is obtained following the
proof of [9, Corollary 3.5], where V is chosen to be Pm and the injectivity of T follows by
Theorem 3. �
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6. Error estimates on a cube

In this section we will derive error estimates for closed cubes contained in �, a compact subset
of Rs . We will first state necessary assumptions that hold for the remainder of the paper. We will
then bound the quantity ‖c‖1 on certain cubes and also derive estimates for the �j ’s. Combining
this will give computable upper bounds for the power function P

�
�,� in (10).

Assumption 10. Let � be in Ck
� (Rs), with k even, i.e. � has k derivatives that are Hölder contin-

uous at the origin. Further, let the set � comprise vector-valued Dirac �-distributions �j = vj�xj
,

with vj ∈ Rs for 1�j �N , based on data sites X = {xj }Nj=1 ⊂ � in Rs . Let � be given by

� = (−1)|�|vD��x , where x ∈ �, v ∈ Rs , and |�|�k/2. We define the mesh norm, or Hausdorff
distance, for � with respect to X to be

h := sup
y∈�

min
xj ∈X

‖y − xj‖2. (11)

We assume that x, via �, is contained in a closed cube W(w, �) := {x ∈ Rs : ‖x−w‖∞ ��} ⊂ �.
We abbreviate W := W(w, �). Let � > h, which guarantees that Y := X ∩ W is non-empty.

The following proposition now yields an upper bound on W for ‖c‖1. We let hY,W

:= supz∈W minxj ∈Y ‖z − xj‖2 be the mesh norm for W with respect to Y.

Proposition 11. If hY,W ��/[2√
s(m− 1)2] holds, then for every x ∈ W = W(w, �), there exist

coefficients c = (cj )
N
j=1 such that (�∗, p) =

N∑
j=1

cj (�
∗
j , p) for all p ∈ Pm and ‖c‖1 �2‖v‖1

[(m − 1)2/�]|�|.

Proof. We mainly follow the proof of [9, Lemma 6.1] with a few exceptions based on the
vector-valued nature of p ∈ Pm which we will identify here. Define a norm on Pm, ‖p‖∞,W

:= supx∈W max1� i � s |pi(x)|, where pi denotes the ith component of p ∈ Pm. Similar to
[9, Lemma 6.1] we obtain the following estimate for some 
 ∈ Rs : since ‖p‖∞,W = |pl(z)| for
some z ∈ W and l ∈ {1, . . . , s}, applying the mean value theorem gives

|pl(y)|�‖p‖∞,W −
∣∣∣∣∣∣

s∑
j=1

�pl

�x(j)
(
)(z(j) − y(j))

∣∣∣∣∣∣ , (12)

for some 
 ∈ W , where y is the closest point in Y to z, and x(j) is the jth component of x, etc.
Using the following estimate derived in [9]:

‖D�p‖∞,W �
(

(m − 1)2

�

)|�|
‖p‖∞,W , (13)

we find that ‖p‖∞,Y � |pl(y)|�1/2‖p‖∞,W , where we defined ‖p‖∞,Y to be
supy∈Y max1� i � s |pi(y)|. But this is equivalent to the—in Section 5 defined—operator T (p) =
(v∗

j p(xj ))
N
j=1 being injective, with ‖T −1‖�2. A short calculation now gives |(�∗, p)|�‖v‖1

sup1� j � s |D�pj (x)|, and hence ‖(�∗, p)‖P∗
m

�‖v‖1[(m − 1)2/�]|�| for all p ∈ Pm, via (13).
Combining this and Proposition 9 yields the result. �
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Note that Remark 6 ensures that if m = 1 in Proposition 11, one can enlarge m such that
�/[2√

s(m − 1)2] is well defined. The following theorem bounds the power function on W via
(10). It shows the specific dependencies of all variables; a more general formulation is given in
Theorem 14. The next result combines Proposition 11 with estimates for the �j ’s derived in its
proof. Let �Y ⊂ � be the set of Dirac �-distributions at points in Y.

Theorem 12. Let Assumption 10 be fulfilled. If the mesh norm satisfies that hY,W ��/

[2√
s(m − 1)2], then the power function P

�
�,�Y

may be estimated as follows on W: define rs,m :=
2
√

s(m − 1)2, ṽ := maxxj ∈Y ‖vj‖1, and M�
k,� := max 1��,�� s

|	|=k

‖D	��,�‖C� , then

(P
�
�,�Y

)2 �4 (2
√

s �)k+�−2|�| M�
k,� r |�|

s,m ṽ ‖v‖2
1

(
s(k−|�|)/2

(k − |�|)! + r |�|
s,m

sk/2

k! v

)
. (14)

Proof. Let �Pm
be the Taylor polynomial of degree k−1 for a scalar-valued function � ∈ Ck(Rs).

If necessary, enlarge Pm such that it consists of polynomials of total degree not less than k − 1.
The following inequality was established in [9]:

|D�(� − �Pm
)(t)|�C ‖t‖k+�−|�|

2 , |�|�k, (15)

with C := s(k−|�|)/2M̃
�
k,�

(k−|�|)! , M̃
�
k,� := max|	|=k ‖D	�‖C� , and ‖t‖ being sufficiently small. A short

calculation gives

�0 �‖v‖2
1 max

1��,�� s
|D2�(��,� − �Pm�,�)(0)|.

Applying (15) componentwise with � = ��,�, � = 2�, and t = 0 now yields that �0 = 0.
Applying (15) once again with � = �, we see that

�1 = max
xj ∈Y

∣∣∣∣∣∣
s∑

�,�=1

v̄(�)D�(��,� − �Pm�,�)(x − xj )vj (�)

∣∣∣∣∣∣
� ‖v‖1 max

xj ∈Y
‖vj‖1

s(k−|�|)/2

(k − |�|)! M�
k,�(2

√
s�)k+�−|�|, (16)

because ‖x − xj‖�2
√

s�. Similarly,

�2 � max
xj ∈Y

‖vj‖2
1

sk/2

k! M�
k,� (2

√
s�)k+�. (17)

Combining Proposition 11, Theorem 8, (16), and (17), with the fact that �0 = 0 yields (14). �

7. Estimates on � and examples

We are now in the position to derive uniform error estimates on � for matrix-valued RBF
interpolants. We will need the following result that relates the mesh norms on the cube and on �.
For a proof see [9].

Lemma 13. Given a closed cube W = W(w, �) such that � > h. Then hY,W �(1 + √
s)h.
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In Theorem 14 we will use ‖g‖∞ := supv∈Rs ,‖v‖1=1 |v∗g(x)|. We further set T 2 := M�
k,�(

2Rk+�−|�|C s(k−|�|)/2

(k−|�|)! + Rk+�C2 sk/2

k!
)

, where R := 4s(1 + √
s)(m − 1)2 and C := 21−|�|(s +√

s)−|�|.

Theorem 14. Let Assumption 10 be fulfilled. If maxxj ∈X ‖vj‖1 �1, ‖v‖1 �1, and �=
2(

√
s + s)(m − 1)2h, then

sup
x∈W(
,�)⊂�

‖D�(f − sf,X)(x)‖∞ � |f |�T h
k+�

2 −|�|, (18)

where T and M�
k,� are defined as above and in Theorem 12, respectively.

Proof. Let W = W(w, �). Since � = 2(
√

s + s)(m− 1)2h and hY,W �(1 +√
s)h by Lemma 13,

we get hY,W ��/[2√
s(m − 1)2]. Hence, the assumptions for Theorem 12 are fulfilled and (14)

holds. Since W ⊂ �, and since Y ⊂ X implies that �Y ⊂ �, we get P
�
�,� �P

�
�,�Y

. Replacing
�Y by � and W by � in (14) yields

(P
�
�,�)2 �M�

k,�

(
2Rk+�−|�|C s(k−|�|)/2

(k − |�|)! + Rk+�C2 sk/2

k!

)
hk+�−2|�|. (19)

Finally, combining (6) with (19), we obtain the desired uniform error estimate on �. �

Remark 15. Theorem 14 says that for any x contained in a cube W ⊂ � of a certain length, the
error can be bounded uniformly. Also note that the upper bound (18) consists of three terms, only
|f |� depending on the function f, and only the last quantity depending on the mesh norm h.

A set of matrix-valued RBFs that fulfill the assumptions of our theorems is given in the following
proposition.

Proposition 16. Let � be a Wendland function in C2k+2(Rs). Let �(x) = {∇∇T − �I }�(x)

be the s × s matrix-valued function based on the Wendland function � with its components in
C2k(Rs). Then

sup
x∈W(
,�)⊂�

‖D�(f − sf,X)(x)‖∞ � |f |�C�h
k+ 1

2 −|�|. (20)

Proof. In the proof of [11, Theorem 11.17] the following inequality was given:

|D�(� − p)(t)|�C� ‖t‖2k+3−|�|
2 ,

for ��2k + 2 and � ∈ C2k+2(Rs) being a Wendland function. Hence, in the matrix-valued case
� = {∇∇T − �I }�(x) ∈ C2k(Rs) we obtain componentwise

|D�(��,� − �Pm�,�)(t)|�C� ‖t‖2k+1−|�|
2 for |�|�2k.

Using the last inequality instead of (15) for deriving upper bounds for �0, �1, and �2 then yields
the desired result. �
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We will conclude the paper with a two-dimensional numerical example where all needed
assumptions are present and the numerical results are compared to the theoretical bounds. Let
f : R2 → R2 be the divergence-free function given by f(x) = (u(x), v(x))T with x = (x, y)T ,
u(x) = x3 − 3xy2 + y, and v(x) = y3 − 3x2y + 2. We assume that we have given data dj ,
for j = 1, . . . , 2N , with dj = u(xj ) and dj+N = v(xj ) at locations xj , for j = 1, . . . , N , on
a regular grid in � := [−1, 1] × [−1, 1]. The spacing between points is given by dx = dy =
2/(

√
N − 1). The velocity data for N = 256 locations is displayed in Fig. 1. Then, the mesh

norm for � with respect to X is given by h = 1
2

√
dx2 + dy2. We wish to interpolate the data

employing a divergence-free RBF of the form (1). Since f ∈ EK , the data can be described by
the Gdiv-linearly independent set of distributions � := {�j }2N

j=1 ∈ E ′
K with �j = (1, 0)T �xj

and

�j+N = (0, 1)T �xj
, for j = 1, . . . , N . Further, we choose �(x) = {∇∇T − �I }�(x) ∈ C2(R2)

with � = �4,2 being the ∈ C4-Wendland function as interpolating RBF. Then the theoretical
approximation result from the previous proposition is valid. Observe that for x = (x, y)T and
�(x) := (�i,j (x))1� i,j �2 we have

�1,1(x) = −56/3(1 − ‖x‖)4+(5x2 + 35y2 − 4‖x‖ − 1),

�1,2(x) = �2,1(x) = 560(1 − ‖x‖)4+xy,

�2,2(x) = −56/3(1 − ‖x‖)4+(35x2 + 5y2 − 4‖x‖ − 1).

For � ∈ span{�} the interpolant now takes the form

sf,X(x) = � ∗ �(x) =
N∑

j=1

�j

(
�1,1(x − xj )

�2,1(x − xj )

)
+

N∑
j=1

�j+N

(
�1,2(x − xj )

�2,2(x − xj )

)
. (21)

We wish to get an error estimate for supx∈W(
,�)⊂� ‖f(x) − sf,X(x)‖∞ using � = ( 1√
2
, 1√

2
)T

�x and |�| = 0. Hereby, let x be contained in W(
, �) ⊂ � with � = min (1, 2(
√

2 + 2)h) and

 = 0 without loss of generality.

We now turn to the numerical results. Let N = 9, 36, 144, 576, 2304 be the number of data
points. For fixed N, the interpolation error is measured via ERRORN as follows. For ERRORN :=
supx∈W(
,�)∩X̃

‖f(x) − sf,X(x)‖∞, the interpolant was obtained using the above N data points

and the final l∞-error was calculated on a refined data set X̃ based on a grid of spacing dx̃ =
dỹ = 16 dx. We assume that the interpolation error satisfies

sup
x∈W(
,�)⊂�

‖f(x) − sf,X(x)‖∞ � |f |�C(s, k, �, m)ht−|�|,

for some integer t, space dimension s, continuity constant k of the RBF, derivative index vector
�, and for the polynomial order m. For |�| = 0 we define

ratioN := ERRORN

ERROR4N

≈ 2t ,

applying that quadrupling N leads to dividing h by 2. Table 1 summarizes our findings.
It may be observed that the approximation order t lies between 1.5 and 2.1, depending on the

size of the mesh norm h. Proposition 16 (applied with |�| = 0 and k = 1) yields the value t = 1.5.
The deviation may be caused by stability-influencing factors of the numerical example, such as
the number of interpolation and evaluation points as well as the stability of the inversion algorithm
used in MATLAB. Note that a higher value of t leads to a better error estimate since h is smaller
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Fig. 1. Numerical example: velocity data for N = 256.

Table 1
Errors for the example

N h ERRORN ratioN t

9 0.7071 3.0927 – –
36 0.2828 0.7258 4.2610 2.0912

144 0.1286 0.2528 2.8705 1.5213
576 0.0615 0.0683 3.7018 1.8882

2304 0.0301 0.0167 4.0889 2.0317

than one for all values of N. Hence, the order of the theoretical estimate of Proposition 16, t = 1.5,
is sharp.

We close by noting that, even though we have restricted our attention to divergence-free inter-
polants, the scope of our methods is more general. They may be adapted to construct other classes
of customized RBFs, e.g. curl-free interpolants. If � = 3, s = 3, and if B consists of B1(x) =
(0, −x3, x2)

T , B2(x) = (x3, 0, −x1)
T , and B3(x) = (−x2, x1, 0)T , where x = (x1, x2, x3)

T ,
then GB = Gcurl, the admissible space of irrotational vector-valued functions. In this case, the
general form of an irrotational, 3 × 3 matrix-valued RBF is given by

�curl(x) := {∇∇T }�(x),

with all of its columns being in Gcurl, as one can verify directly.
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